学苑简介 网上报名 免费视听 学苑图书 全国分校

学苑教育
   学苑教育 > 管理类联考 > 学科资料 > 数学二 > 正文
MBA联考数学:排列、组合、概率的概念解析
作者:佚名   来源:本站原创  日期:2014-10-13 16:24:59  点击数:2152

排列、组合、概率都与集合密切相关,在MBA联考中都占有重要比重。排列和组合都是求集合元素的个数,概率是求子集元素个数与全集元素个数的比值。

  以最常见的全排列为例,用S(A)表示集合A的元素个数。用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,则每一个九位数都是集合A的一个元素,集合A中共有9!个元素,即S(A)=9!

  如果集合A可以分为若干个不相交的子集,则A的元素等于各子集元素之和。把A分成各子集,可以把复杂的问题化为若干简单的问题分别解决,但我们要详细分析各子集之间是否确无公共元素,否则会重复计算。

  集合的对应关系

  两个集合之间存在对应关系(以前学的函数的概念就是集合的对应关系)。如果集合A与集合B存在一一对应的关系,则S(A)=S(B)。如果集合B中每个元素对应集合A中N个元素,则集合A的元素个数是B的N倍(严格的定义是把集合A分为若干个子集,各子集没有共同元素,且每个子集元素个数为N,这时子集成为集合A的元素,而B的元素与A的子集有一一对应的关系,则S(A)=S(B)*N

  例如:从1、2、3、4、5、6、7、8、9中任取六个数,问能组成多少个数字不重复的六位数。

  集合A为数字不重复的九位数的集合,S(A)=9!

  集合B为数字不重复的六位数的集合。

  把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3!

  这时集合B的元素与A的子集存在一一对应关系,则

  S(A)=S(B)*3!

  S(B)=9!/3!

  组合与排列的区别在于,每一个组合中的各元素是没有顺序的。无论这些元素怎样排列,都只当作一种组合方式。所以在计算组合数的时候,只要分步,就意味有次序。取N次,N件物品的N!种排列方式都会被当作不同选法,该选法就重复计了N!次。比如10个球中任取三个球,取法应该是C(10,3),但如果先从10个中取一个,得C(10,1),再从9个中取一个得C(9,1),再从8个中取一个得C(8,1),再相乘结果成了P(10,3),结果增大了3!倍。

  概率的概念。在有限集合的情况下,概率是子集元素个数与全集元素个数的比值。在无限集合的情况下,概率是代表子集的点的面积与代表全集的点的面积的比值。

  概率分布函数可以描述概率分布的全貌。离散型的概率分布是一组数列,计算事件发生的概率、数学期望和方差都使用数列的计算方法。连续型的概率分布是一个函数, 它等于概率密度函数的积分,计算事件发生的概率、数学期望和方差都使用积分的计算方法。

  概率的概念不难理解,解题能力决定于对数列和积分中的方法掌握的熟练程度。

 

  我要报名
姓  名: E-mail:
电  话: 如何知道我们:
预约课程:  免费赠送一月联考邵宁词汇课程
 免费预约管理类联考MBA、MPA、MPACC基础班试听公开课
 免费预约MBA提前面试备考讲座
备注信息:
学苑保过班
地址:北京海淀区海淀区苏州街55号名商大厦10层1002室 邮编:100872 传真:010-62511251
版权所有:北京学苑科技开发中心